Table of Contents |
---|
...
In FlowJo, after importing your cytometry data, click the 'Check sample quality' button in the tools workspace. This will flag samples that should be checked. FlowJo plots the median values for each parameter over time and flags any that are outside of 2 standard deviations. Green is good. Any thing else should be reviewed.
Active sample quality check - FlowAI in FlowJo
...
- Open RStudio (ensure you run as administrator, otherwise you may run into permission errors).
- Make a new project (a project can be considered a workspace where everything can be saved to)
- You want to download and load packages for the analysis that you will be doing (not efficient to load all the libraries, as RStudio is limited to 100, I learnt by experience, to see loaded libraries, type library())
Some basic packages/libraries should be installed while working with flow data, this list isn't comprehensive but it contains some for the workflows listed, you can load the libraries that you will use.
Code Block #this will download the core Bioconductor packages source("https://bioconductor.org/biocLite.R") biocLite() #this will download flowCore (useful core for working with flow data) source("https://bioconductor.org/biocLite.R") biocLite("flowCore",dependencies=TRUE,suppressUpdates=TRUE) #this will download flowUtils (another set of useful tools) source("https://bioconductor.org/biocLite.R") biocLite("flowUtils",dependencies=TRUE,suppressUpdates=TRUE) #this will download flowViz source("https://bioconductor.org/biocLite.R") biocLite("flowViz",dependencies=TRUE,suppressUpdates=TRUE) #this will download flowSOM source("https://bioconductor.org/biocLite.R") biocLite("FlowSOM",dependencies=TRUE,suppressUpdates=TRUE) #this will download geneplotter source("https://bioconductor.org/biocLite.R") biocLite("geneplotter",dependencies=TRUE,suppressUpdates=TRUE) #this will download Seurat source("https://bioconductor.org/biocLite.R") biocLite("Seurat",dependencies=TRUE,suppressUpdates=TRUE) #this will download stringi source("https://bioconductor.org/biocLite.R") biocLite("stringi",dependencies=TRUE,suppressUpdates=TRUE) #this will download yaml source("https://bioconductor.org/biocLite.R") biocLite("yaml",dependencies=TRUE,suppressUpdates=TRUE) #this will download dplyr source("https://bioconductor.org/biocLite.R") biocLite("dplyr",dependencies=TRUE,suppressUpdates=TRUE) #this will download openCyto source("https://bioconductor.org/biocLite.R") biocLite("openCyto",dependencies=TRUE,suppressUpdates=TRUE) #this will download tsne source("https://bioconductor.org/biocLite.R") biocLite("tsne",dependencies=TRUE,suppressUpdates=TRUE) #this will download Rtsne source("https://bioconductor.org/biocLite.R") biocLite("Rtsne",dependencies=TRUE,suppressUpdates=TRUE) #this will download edgeR source("https://bioconductor.org/biocLite.R") biocLite("edgeR",dependencies=TRUE,suppressUpdates=TRUE) install.packages("dplyr",dependencies=TRUE,suppressUpdates=TRUE) install.packages("yaml",dependencies=TRUE,suppressUpdates=TRUE) install.packages("devtools",dependencies=TRUE,suppressUpdates=TRUE) #use this to load downloaded packages library(flowCore) library(FlowSOM) library(flowViz) library(flowUtils) library(geneplotter) library(Seurat) library(dplyr) library(yaml) library(stringi) library(openCyto) library(tsne) library(Rtsne)
Note: There are many Vignettes in the packages which are ever so helpful. Vignettes are help guides that can help to show you how to use different tools/functions.Some commonly used codes - good to get familiar with
Code Block #gets to working directory getwd() #sets the working directory setwd('C:/Users/utopi/Desktop/testdata') #assign a file to a variable fileName <- "C:/Users/utopi/Desktop/testdata/sample.fcs" #assign a folder to a variable folderName <- "C:/Users/utopi/Desktop/testdata/" #read a FCS file to a variable using read.FCS from flowCore data1 = read.FCS('A1.fcs') #assign a variable an example data file i.e. from a vignette example fileName <- system.file("extdata","lymphocytes.fcs",package="FlowSOM")
- Examples to try...
flowClust workflow in vignette
flowSOM workflow in vignette
openCyto workflow in vignette
Rtsne - https://github.com/lmweber/FlowSOM-Rtsne-example
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980779/
https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.23030 - good comparison paper
Lets analyse some data.. - Put your data in a folder on your computer
- In RStudio go to file and then new R script (we will be writing the script so that we can rerun it if needed)
Lets assign the folder to a variable
Code Block folderName <- "C:/Users/utopi/Desktop/testdata/"
Lets load the flowSOM package
Code Block #this will download flowSOM source("https://bioconductor.org/biocLite.R") biocLite("FlowSOM",dependencies=TRUE,suppressUpdates=TRUE)library(flowSOM)
Lets make the flowSOM object
Code Block fSOM <- FlowSOM(file, # Input options: compensate = TRUE,transform = TRUE, scale = TRUE, # SOM options:(will use parameters 1,4 and 5 thru 7) colsToUse = c(1,4,5:7), xdim = 7, ydim = 7, # Metaclustering options: nClus = 10, # Seed for reproducible results: seed = 42)
Lets view the flowSOM
Code Block PlotStars(fSOM$FlowSOM,backgroundValues = as.factor(fSOM$metaclustering))
Specific workflows when dealing with data generated at WRHFlow
Method | Useful for... | How to | Example image |
---|---|---|---|
tSNE - R | |||
tSNE - FlowJo | |||
tSNE - MATLAB | |||
SPADE - R | |||
SPADE - FlowJo | |||
SPADE - MATLAB | |||
Scaffold | |||
Vortex | |||
FlowClust | |||
FlowSOM | |||
CITRUS | |||
SamSPECTRAL | |||
RchyOptimyx | |||
immunoClust |
Workflow 1 - Analysing a high parameter single FCS file
...