

Basics of Fluorescence Microscopy

Hong Yu WRH Cell Imaging Facility 6 Sept 2017

Light microscopy

Bright field microscopy Fluorescence microscopy

- Wic
- Con
- Sup
- Oth Fluo

Basics of fluorescence microscopy

- **1. What is expected from a microscope?**
- 2. Why fluorescence microscopy?
- **3. Theory of fluorescence**
- **4. Fluorescence filter set**
- **5. Understanding objectives**
- **6. Designing IF experiments**

What is expected from a light microscope?

Why fluorescence microscopy?

- High contrast
- High specificity
- Quantitative
- Live cell imaging

- Optical sectioning & 3D imaging
- Other advanced imaging technologies
 - FRET, FRAP, FLIM etc
 - Super res
 - Multi photon
 - Others

Theory of fluorescence

QE: quantum efficiency

Shorter wavelength Higher frequency Higher energy Weaker penetration Longer wavelength Lower frequency Less energy Better penetration

Fluorescence filter set

Selection of fluorescent probes

- Great Stokes shift
- High QE
- Thick/thin sample--- Ionger/shorter wavelength ···
- Resolution = (0.61 x λ)/ NA ⁵⁰ shorter wavelength better ²⁵ resolution
- Matching filters and fluorophores---SpectraViewer

Fluorescence SpectraViewer

Photobleaching and solutions

Excited state S_1

Ground state S_0

Protecting against photobleaching

- Select fade-resistant dyes
- Label densely
- Use anti-fade agents
- Budget the photons:
- lower illumination, minimise exposure time only expose when observing
- Store your slides at low temperature

Autofluorescence (AF) and solutions

- AF---green channel worse; red or far red channel better
- AF Fixatives—wash with 0.1% borohydride
- AF quenchers: i.e. Sudan black
- Unmixing: Confocal, Nuance

Understanding objectives—NA & immersion medium

https://www.microscopyu.com/microscopy-basics/introduction-to-microscope-objectives

Understanding objectives—objective correction factors

Objective Specification	Spherical Aberration	Chromatic Aberration	Field Curvature
Achromat		1-2 Colors	No
Plan Achromat	1 Color	2 Colors	Yes
Fluorite	2-3 Colors	2-3 Colors	Νο
Plan Fluorite	3-4 Colors	2-4 Colors	Yes
Plan Apochromat	3-4 Colors	4-5 Colors	Yes

A good quality objective means...

- High NA lens
- Plan Apochromatic lens
- Correction collar

Designing IF experiments

- Negative controls—false positive
 - No staining at all—Endogenous background
 - Staining controls—No 1St Ab, non-specific staining 2nd Ab only, Isotype 1st Ab, absorption ctrl, knockout

Staining

pattern

- Positive controls—verify protocol and 1st Ab
 - Known sample
 - Others: Immunoblots, single staining
- Interpreting IF--staining pattern

Take-home note

Olympus VS 120 scanner

Thank you!

Creeping out your labmates Method #2,428

Hush little cells now, don't say goodbye Daddy's gonna give you fluor.escent dye r And if that dye don't make you blink ♪ Daddy's gonna dump you down the sink

FOR MEDICAL RESEARCH