Finding cures. Saving lives. Giving hope.

Colocalisation microscopy: basics, experiment setup and analysis

"Seeing is believing"

REALLY?

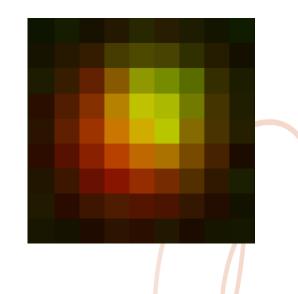
Hong Yu, Cell Imaging Facility 4 July 2018

Outlines

- **1. Defining Coloc**
- **2. Influence on Coloc**
- **3. Experiment setup:** sample prep, acquisition, image processing
- **4. Evaluating Coloc**
- 5. Data analysis: coefficients, available software

6. Coloc microscopy workflow

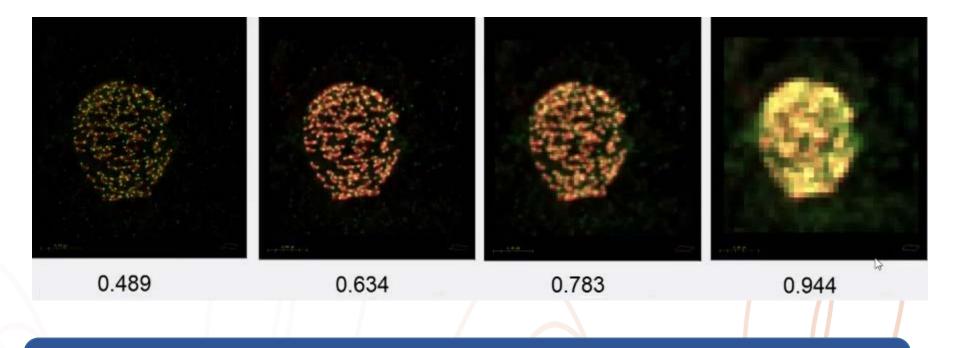
1. Defining colocalisation (Coloc)


Biology

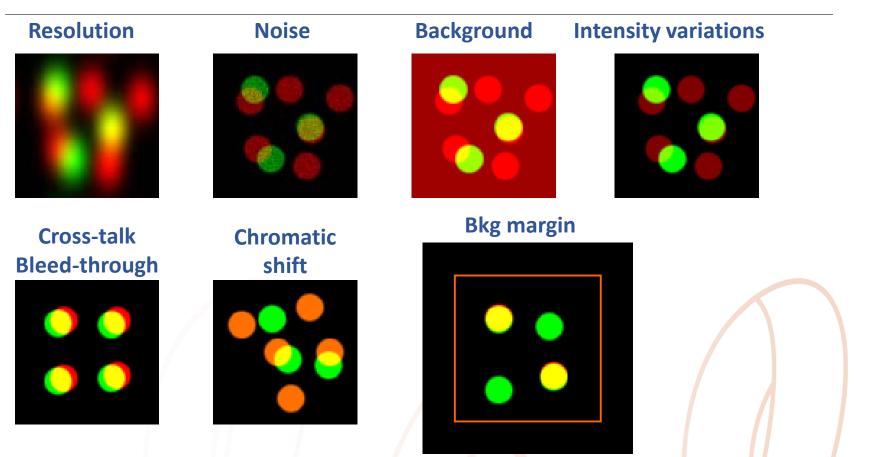
Co-occurrence (overlapping)

Correlation (closeness, association)

Digital imaging


Sharing the same pixel location

Coloc never measures interactions

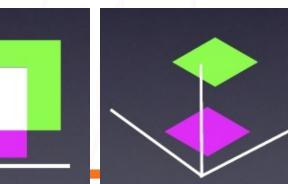

2. Influence on Coloc—resolution

Resolution

• High resolution Coloc microscopy is more convincing

2. Influence on Coloc—other difficulties

Optimising experiment setup
Image preparation helps: deconv, restoration etc


3. Experiment setup

Sample prep

- Labelling optimisation
- AF
- Dye pair choice
- Controls

Mic & imaging

- Instrument choice
- Lens (NA, PlanApo, oil)
- Nyquist sampling
- Z stacking
- Low laser
- Seq, saturation
- Same conditions
- Beads imaging

Nyquist rate and PSF calculator Microscope type Confocal Numerical aperture 1.3

488

520

1

Oil

Excitation wavelength
Emission wavelength
Number of excitation photons

Lens	immersion	refractive	index

Image processing

- Lossless format
- No change of Bitdepth
- No projection

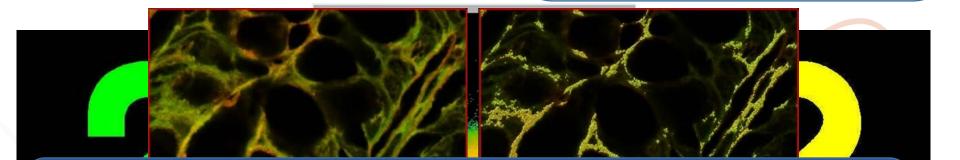
nm

es. Giving hope.

ulate 🖬

1.515

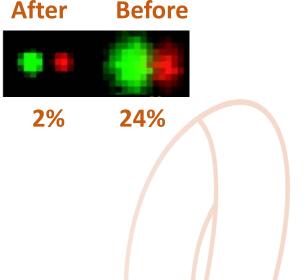
Calculate a Point Spread Function


4. Evaluating Coloc

Qualitative/visual

- Color merge image
- Scatterplot
- Coloc map

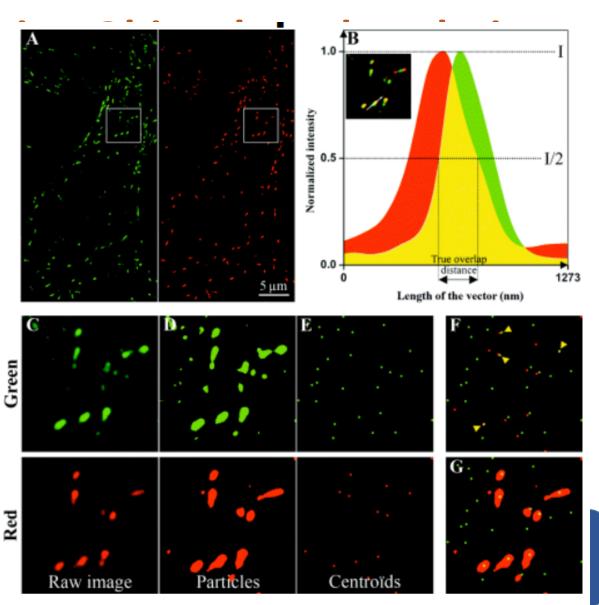
Quantitative


- Object-based segmentation)
- Intensity-based (coefficients)

• Combine different methods Analyse multiple images + statistics test

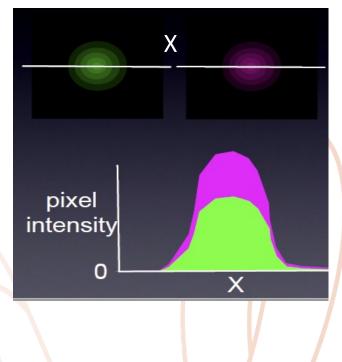
5. Coloc analysis—image preparation

- Image restorations (i.e. Huygens)
 cross talk
 chromatic aberration
 focal plane drift
 others
 - Deconvolution
 - Background correction

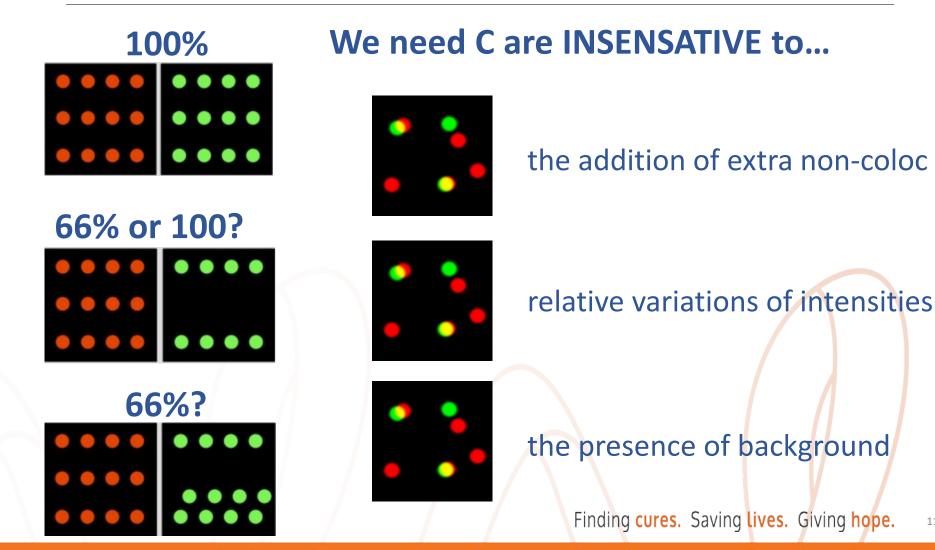


5. Coloc analy

- Large objects, se
- Less intensity de
- Measurements: c


Co-occurrence/ov

5. Coloc analysis---Intensity based analysis_1


- Relationship between channel intensities
- Intensity profiles overlap
- Measurements

coefficients

5. Coloc analysis---Intensity based analysis 2

11

5. Coloc analysis---major coefficients for intensity based analysis

Which coefficient(s)? questions to ask...

- Correlation or co-occurrence?
- Random or true?

Correlation	Co-occurrence	
1. Pearson's Correlation Coefficient (PCC)	1. Manders' Overlap Coefficients (MOC)	
Object PCC	• K1, k2	
2. Spearman's Rank Correlation Coefficient (SRCC)	2. Manders' Coloc Coefficients	
Object SRCC	• m1, m2; M1, M2	
Costes' Randomisation Analysis		

5. Coloc analysis---Pearson's Correlation C (PCC)

	$R_{r} = \frac{\sum_{i} (Ch1_{i} - Ch1_{mean}) \cdot (Ch2_{i} - Ch2_{mean})}{\sqrt{\sum_{i} (Ch1_{i} - Ch1_{mean})^{2} \cdot \sum_{i} (Ch2_{i} - Ch2_{mean})}}$	Pearson's Correlation Coefficient (PCC)
	Meaning	the linear correlation of the intensity distribution between two channels. the similarity/correlation between shapes/pattern/variation of two channels, while ignoring signal intensities
	Standard Values	-1~+1. 0: no correlation; >0: G is higher than Avg when R is higher than Avg (correlation); <0: G is lower than Avg when R is higher than Avg
	Values indicating Colc	0.5-1
	Values indicating absence of coloc	-1-0.5
	Example	PC=0.8. 80% of pixels in both ch are positively correlated
	Advantage	Not sensitive to the intensity of constant background Not sensitive to each channel/overlapping pixels (brightness)
	Disadvantage	 Difficult to interpret sensitive to non-coloc signals No information about the individual channels. Affected by noise
	Application	Any coloc. Co-correlation. Sub-domains.

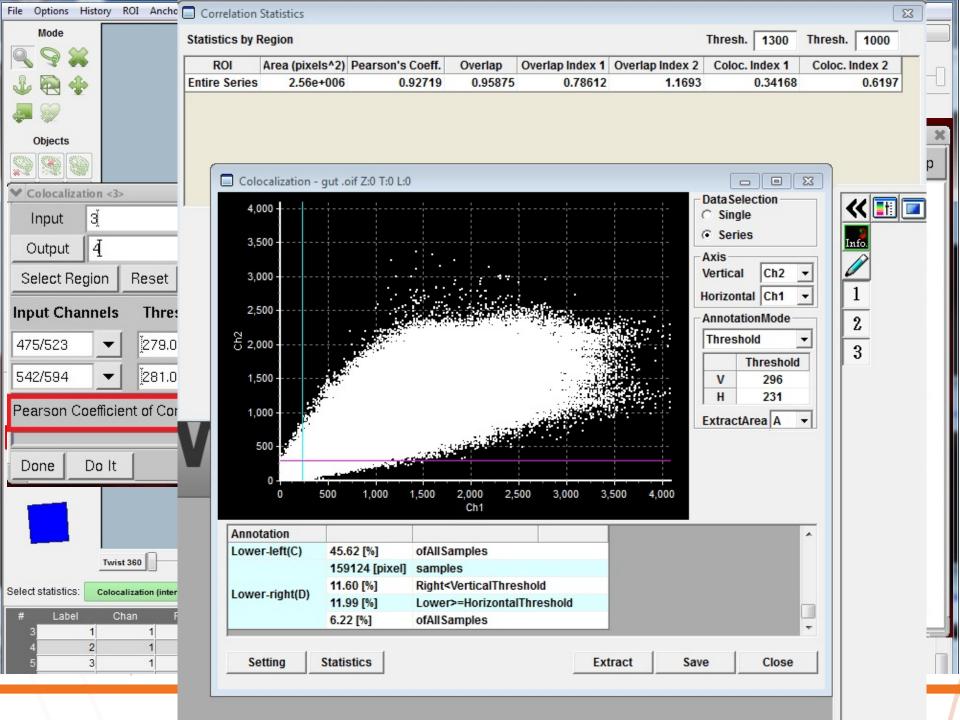
5. Coloc analysis---Spearman's Rank C (SRCC)

	Spearman's Rank Correlation Coefficient (SRCC)
Meaning	SRCC is equivalent to the PCC, just to apply pixel intensity ranks (rank number 1, 2,3) rather than to the intensities themselves
Standard Values	
Values indicating Colc	
Values indicating absence of coloc	
Example	
Advantage	None linear correlation
Disadvantage	
Application	Non-linear correlation or codependance

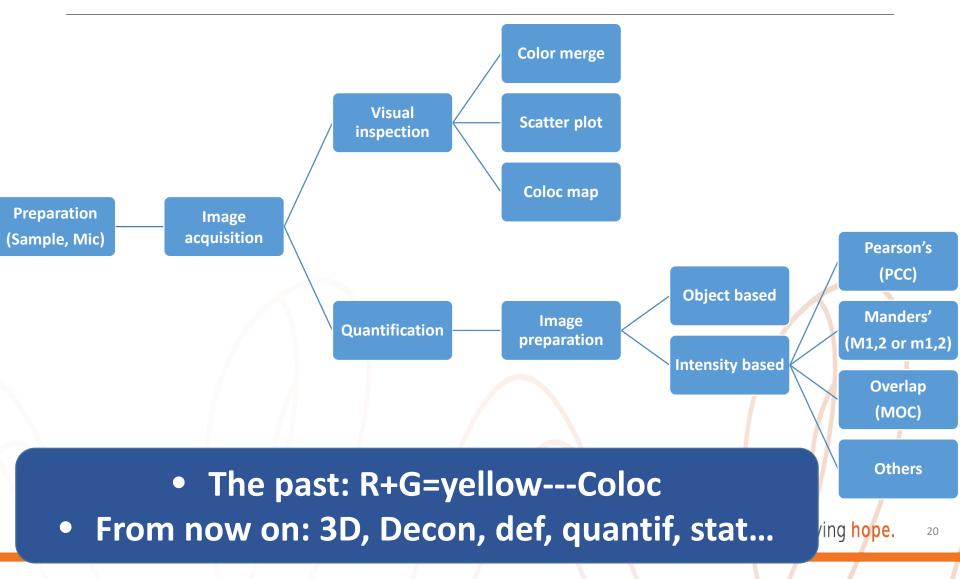
5. Coloc analysis---Manders' Overlap C (MOC)

R = 1	$\frac{\sum_{i} Ch1_{i} \cdot Ch2_{i}}{\sqrt{\sum_{i} (Ch1_{i})^{2} \cdot \sum_{i} (Ch2_{i})^{2}}}$	Overall Overlap Coefficient (R) also Manders' Overlap Coefficient (MOC)
	Meaning	Indicates an actual overlap of the signals. the ratio of intersecting volume (ch1&2) to total object volume (Ch1&2)
Sta	andard Values	0^{+1} . • R = 1 : perfect coloc/correlation • R= 0 : random (no) coloc
ir	Values ndicating Colc	>0.6
	lues indicating sence of coloc	<0.6
	Example	R= 0.5 – 50% of both chan (objects) overlap
	Advantage	Rough but easy to interpret • Not sensitive to the intensity of the overlapping pixels
C	Disadvantage	Sensitive to background & noise • No information about the individual ch
	Application	Volume in each ch is more or less the same and intensities are constant inside the objects and the image can be considered as binary (B/W).

5. Coloc analysis---Manders' K overlap C (k1, k2)


1	$k_{1} = \frac{\sum_{i} Ch1_{i} \cdot Ch2_{i}}{\sum_{i} (Ch1_{i})^{2}} k_{2} = \frac{\sum_{i} Ch1_{i}}{\sum_{i} Ch1_{i}}$ $R^{2} = k_{1} \cdot k_{2}$	$Ch_{i} \cdot Ch_{i}$
_	$\frac{\sum_{i} (CM_{i})}{R^{2} = k_{1} \cdot k_{2}}$	The k overlap coefficients (k1, k2)
	Meaning	R2=k1• k2 . Split the value of coloc into two separate parameters, allows to determine the contribution of each ch/Ag to the areas with coloc
	Standard Values	vary
	Values indicating Colc	>0.5
	Values indicating absence of coloc	Close values (0.5 and 0.6; 0.8 an d0.9)
	Example	Distant values (0.5 and 0.9; 0.2 and 0.7)
	Advantage	The 2 channels are analyzed separately • Addition of a not colocalized signal will affect only one of the channels
	Disadvantage	depend strongly on the ratio of total intensities in both channels
	Application	When two ch intensities are at a similar level

5. Coloc analysis---Manders' Coloc C (m1, m2)


$\sum Ch_{i,color}$ $\sum Ch_{i,color}$	$h2_{icolor}$
$m_1 = \frac{\sum_i c_{i,conoc}}{\sum_i ch 1_i} m_2 = \frac{\sum_i c_{i,conoc}}{\sum_i c_{i,conoc}} m_2$	Manders' original coefficients (m1, m2)
Meaning	Describes portion of each ch coloc with the other. % of Ch1 pix intensities coloc with Ch2 (m1).
Standard Values	0~+1.
Values indicating Colc	0.5-1
Values indicating absence of coloc	<0.5
Example	m1=1, m2=0.4: 100% of Ch1 pixel intensities coloc/overlap with Ch2, but only 40% of Ch2 pixel intensities coloc/overlap with Ch1.
Advantage	independent of signal proportionality (good for non linear); provides two components
Disadvantage	Sensitive to background
Application	Any coloc.

5. Coloc analysis---Manders' Coloc C (M1, M2)

	Σ_{Ch1} Σ_{Ch2}	
М	$H_1 = \frac{\sum_{i} Ch I_{i,coloc}}{\sum_{i} Ch I_i} M_2 = \frac{\sum_{i} Ch Z_{i,i}}{\sum_{i} Ch Z_i}$	Manders' Thresholed Coefficients (M1, M2)
	Meaning	% of Ch1 pix intensities coloc with Ch2 (m1). Same as m1 and m2 but applied to analyze scatter gram ROI. Thus, M1 can be defined as the co- occurrence fraction of color 1 with color 2. Likewise, M2 is the co- occurrence fraction of color 2 with color 1.
	Standard Values	0~+1.
	Values indicating Colc	0.5-1
	Values indicating absence of coloc	<0.5
	Example	M1=1, M2=0.4: 100% of Ch1 pixel intensities coloc/overlap with Ch2, but only 40% of Ch2 pixel intensities coloc/overlap with Ch1.
	Advantage	Less sensitive to background problems. less dependent on the actual intensity ratios between channels
	Disadvantage	Difficult to interpret • No information about the individual channels • Affected by noise
	Application	Any coloc.

6. Coloc microscopy workflow

Acknowledgement & References

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2818.2006.01706.x

https://svi.nl/ColocalizationCoefficients

http://jcs.biologists.org/content/joces/131/3/jcs211847.full.pdf

And many others...

Thank you!